Journal Article
Randomized Controlled Trial
Add like
Add dislike
Add to saved papers

Helium-hyperoxia, exercise, and respiratory mechanics in chronic obstructive pulmonary disease.

RATIONALE: Hyperoxia and normoxic helium independently reduce dynamic hyperinflation and improve the exercise tolerance of patients with chronic obstructive pulmonary disease (COPD). Combining these gases could have an additive effect on dynamic hyperinflation and a greater impact on respiratory mechanics and exercise tolerance.

OBJECTIVE: To investigate whether helium-hyperoxia improves the exercise tolerance and respiratory mechanics of patients with COPD.

METHODS: Ten males with COPD (FEV(1) = 47 +/- 17%pred [mean +/- SD]) performed randomized constant-load cycling at 60% of maximal work rate breathing air, hyperoxia (40% O(2), 60% N(2)), normoxic helium (21% O(2), 79% He), or helium-hyperoxia (40% O(2), 60% He).

MEASUREMENTS: Exercise time, inspiratory capacity (IC), work of breathing, and exertional symptoms were measured with each gas.

RESULTS: Compared with air (9.4 +/- 5.2 min), exercise time was increased with hyperoxia (17.8 +/- 5.8 min) and normoxic helium (16.7 +/- 9.1 min) but the improvement with helium-hyperoxia (26.3 +/- 10.6 min) was greater than both these gases (p = 0.019 and p = 0.007, respectively). At an isotime during exercise, all three gases reduced dyspnea and both helium mixtures increased IC and tidal volume. Only helium-hyperoxia significantly reduced the resistive work of breathing (15.8 +/- 4.2 vs. 10.1 +/- 4.1 L . cm H(2)O(-1)) and the work to overcome intrinsic positive end-expiratory pressure (7.7 +/- 1.9 vs. 3.6 +/- 2.1 L . cm H(2)O(-1)). At symptom limitation, tidal volume remained augmented with both helium mixtures, but IC and the work of breathing were unchanged compared with air.

CONCLUSION: Combining helium and hyperoxia delays dynamic hyperinflation and improves respiratory mechanics, which translates into added improvements in exercise tolerance for patients with COPD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app