JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Effects of clenbuterol and cyclosporin A on the myosin heavy chain mRNA level and the muscle mass in rat masseter.

To gain more insight into the molecular mechanism of muscle growth and fiber-type transformations, we analyzed the effects of beta(2)-adrenergic agonist clenbuterol (CB) and/or cyclosporin A (CsA), a potent inhibitor of calcineurin (CaN), on the muscle mass as well as on the mRNA levels of myosin heavy chains (MHC I, IIa, IId/x, IIb), using a real-time RT-PCR with specific primers in rat masseter. In comparison with control, the CB treatment significantly decreased the MHC I mRNA level (p < 0.01), but increased the MHC IId/x mRNA level (p < 0.01), and the CsA treatment significantly decreased the MHC I mRNA level (p < 0.05) in association with the significant decrease in MHC IIb mRNA level (p < 0.05). The CB+CsA treatment significantly decreased the levels of MHC I (p < 0.01) and IIa mRNAs (p < 0.05), but increased the MHC IId/x mRNA level (p < 0.001) in association with a significant decrease in MHC IIb mRNA level (p < 0.01), in comparison with control. The masseter muscle mass was significantly (p < 0.001) increased by either the CB or the CB + CsA treatment, but decreased with the CsA treatment (p < 0.01). These results suggest that in rat masseter muscle, CB has an anabolic action accompanying MHC mRNA I IIa IId/x sequence transition independently of CaN-signaling pathways, and CaN is involved in the type I fiber gene expression and the muscle mass maintenance of type IIb fiber.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app