Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Physiological consequences of social descent: studies in Astatotilapia burtoni.

In many species, social interactions regulate reproductive capacity, although the exact mechanisms of such regulation are unclear. Since social stress is often related to reproductive regulation, we measured the physiological signatures of change in reproductive state as they relate to short-term stress and the stress hormone cortisol. We used an African cichlid fish, Astatotilapia burtoni, with two distinct, reversible male phenotypes: dominant (territorial, T) males that are larger, more brightly colored, more aggressive, and reproductively competent and non-dominant males (non-territorial, NT) that are smaller, camouflage colored, and have regressed gonads. Male status, and hence reproductive competence, depends on social experience in this system. Specifically, if a T male is placed among larger male fish, it quickly becomes NT in behavior and coloration, but complete regression of its reproductive axis takes ca. 3 weeks (White et al. 2002). Reproduction in all vertebrates is controlled by the hypothalamic-pituitary-gonadal axis in which the key signaling molecule from the brain to the pituitary is GnRH1. Here, we subjected T males to territory loss, a social manipulation which results in status descent. We measured the effects of this status change in levels of circulating cortisol and testosterone as well as mRNA levels of GnRH1 and GnRH receptor-1 (GnRH-R1) in the brain and pituitary, respectively. Following short-term social suppression (4 h), no change was observed in plasma cortisol level, GnRH1 mRNA expression, GnRH-R1 mRNA expression, or plasma testosterone level. However, following a somewhat longer social suppression (24 h), cortisol and GnRH1 mRNA levels were significantly increased, and testosterone levels were significantly decreased. These results suggest that in the short run, deposed T males essentially mount a neural 'defense' against loss of status.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app