JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Blockage of epidermal growth factor receptor by quinazoline tyrosine kinase inhibitors suppresses growth of human hepatocellular carcinoma.

Cancer Letters 2007 April 9
Epidermal growth factor receptor (EGFR) is highly expressed in many human tumors including hepatocellular carcinoma (HCC). Therefore, inhibition of EGF receptors could be a potential target for anticancer therapy. In this study, we investigated the effects of two EGFR tyrosine kinase inhibitors, PD153035 and its analogue 4-[[3-chloro-4-fluorophenyl]amino]-6,7-dimethoxyquinazoline hydrochloride (ANAPD) on human HCC cell lines by cell proliferation assay, flow cytometry and Western blot. Our results demonstrated that both EGFR inhibitors inhibited tumor cell growth in a dose-dependent manner, but ANAPD was more potent than PD153035. These specific inhibitors not only blocked EGF-stimulated EGFR autophosphorylation but also targeted EGFR signaling including MAPK and Akt pathways. Furthermore, EGFR inhibitors induced a delay in cell cycle progression and a G(1) arrest together with a partial G(2)/M block. EGFR inhibitors also induced tumor cells to undergo apoptosis. In conclusion, this study demonstrated that both PD153035 and ANAPD inhibit tumor cell growth in HCC through inhibition of EGFR signaling pathway, and ANAPD is a more potent inhibitor than PD153035. This suggested that blockage of EGF receptors may provide an effective therapeutic approach for human HCC and ANAPD could be a potential drug candidate for the treatment of HCC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app