JOURNAL ARTICLE

Removal of small nonenveloped viruses by antibody-enhanced nanofiltration during the manufacture of plasma derivatives

Thomas R Kreil, Andreas Wieser, Andreas Berting, Martin Spruth, Christian Medek, Gerhard Pölsler, Theodor Gaida, Thomas Hämmerle, Wolfgang Teschner, Hans Peter Schwarz, P Noel Barrett
Transfusion 2006, 46 (7): 1143-51
16836561

BACKGROUND: Filters with nominal pore sizes in the nanometer range are well-established tools for enhancing the virus safety margins of plasma-derived products, yet intrinsically less successful for smaller viruses such as hepatitis A virus (HAV) and human parvovirus B19 (B19V). The formation of virus-antibody complexes increases the effective size of these smaller viruses and would thus improve their removal by nanofiltration. While the principle of virus removal by antibody-dependent nanofiltration has been demonstrated with animal antisera and viruses spiked into human plasma product intermediates, the significance of these results remains unclear due to the potential contributions of xenoanti-bodies and/or heteroagglutination in such heterologous systems.

STUDY DESIGN AND METHODS: The current study investigated antibody-dependent virus removal by nanofiltration in a heterologous animal parvovirus system to establish the concentration dependence of the effect. In addition, the phenomenon was investigated in a homologous system with custom-made HAV and B19V antibody-free and -containing human immunoglobulin intermediates. Viruses were analyzed with infectivity assays and fully validated polymerase chain reaction assays that also circumvent the obscuring effects of neutralizing antibodies with infectivity assays.

RESULTS: By use of the heterologous mice minute virus and the homologous HAV and B19V systems, viruses passed the 35-nm (Planova 35N) filter in the absence of specific antibodies. Beyond a threshold virus antibody concentration, nanofiltration resulted in effective virus removal of viruses smaller than the nominal pore size of the filter used.

CONCLUSION: HAV and B19V are effectively removed by antibody-dependent 35N nanofiltration, already at intermediate antibody concentrations well below those comparable to human plasma pools for fractionation.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
16836561
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"