Add like
Add dislike
Add to saved papers

Electronic absorption spectra of C3Cl, C4Cl, and their ions in neon matrices.

Electronic absorption spectra of C3Cl, C3Cl+, C3Cl-, C4Cl, and C4Cl+ have been recorded in 6 K neon matrices following mass selection. Ab initio calculations were performed (CCSD(T) and CASSCF) to identify the ground and accessible excited states of each molecule. The estimated excitation energies and transition moments aid the assignment. The absorptions observed for C3Cl are the 5(2)A' <-- X(2)A' and 3(2)A'' <-- X(2)A' transitions of the bent isomer and the (2)A1 <-- X(2)B2 transition of the cyclic form in the UV (336.1 nm), visible (428.7 nm), and near-IR (1047 nm) regions, respectively. The band systems for bent C3Cl- (435.2 nm) and linear C3Cl+ (413.2 nm) are both in the visible region and correspond to 2(1)A'' <-- X(1)A' and (1)pi <-- X(1)sigma+ type transitions. The C4Cl and C4Cl+ chains are linear, and the band origins of the 2(2)pi <-- X(2)pi and 2(3)pi <-- X(3)pi electronic transitions are at 427.0 and 405.7 nm. The spectral assignments are supported by analysis of the vibrational structure associated with each electronic transition.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app