Theoretical study of low-lying triplet states of aniline
Xin-Juan Hou, Phung Quan, Tibor Höltzl, Tamas Veszprémi, Minh Tho Nguyen
Journal of Physical Chemistry. A 2005 November 17, 109 (45): 10396-402
16833336
Multireference complete active space self-consistent-field CASSCF(10,12)/ANO and second-order perturbation theory MS-CASPT2 calculations were performed to determine the vertical low-lying singlet and triplet states of aniline. The sequence of the seven lower lying triplet states is T1(1(3)A'), T2(1(3)A' '), T3(2(3)A'), T4(3(3)A'), T5(2(3)A' '), T6(4(3)A'), and T7(3(3)A' '). The 3(3)A', 4(3)A', and 3(3)A' ' states are assigned as 3s, 3py, and 3pz Rydberg states, respectively, while other states correspond to pi <-- pi excitations. Both the T1 and T2 states are found to be below at the lowest-lying singlet S1 (1(1)A' ') state. Geometry, vibrational modes, and electron distribution of the lowest lying T1 state were determined using UB3LYP calculations. The vertical and adiabatic singlet-triplet energy gaps DeltaE(S0-T1) amount to 3.7 and 3.5 +/- 0.2 eV, respectively. In clear contrast with the S0 state, the triplet aniline is no longer aromatic, and its protonation occurs preferentially at the ring meta-carbon site, with a proton affinity PA = 243 +/- 3 kcal/mol.
Full Text Links
Find Full Text Links for this Article
You are not logged in. Sign Up or Log In to join the discussion.