COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

TWNFI--a transductive neuro-fuzzy inference system with weighted data normalization for personalized modeling.

This paper introduces a novel transductive neuro-fuzzy inference model with weighted data normalization (TWNFI). In transductive systems a local model is developed for every new input vector, based on a certain number of data that are selected from the training data set and the closest to this vector. The weighted data normalization method (WDN) optimizes the data normalization ranges of the input variables for the model. A steepest descent algorithm is used for training the TWNFI models. The TWNFI is compared with some other widely used connectionist systems on two case study problems: Mackey-Glass time series prediction and a real medical decision support problem of estimating the level of renal function of a patient. The TWNFI method not only results in a "personalized" model with a better accuracy of prediction for a single new sample, but also depicts the most significant input variables (features) for the model that may be used for a personalized medicine.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app