JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Complete spinal cord transection treated by implantation of a reinforced synthetic hydrogel channel results in syringomyelia and caudal migration of the rostral stump.

Neurosurgery 2006 July
OBJECTIVE: Previously, we reported that synthetic poly(2-hydroxyethyl methacrylate-co-methyl methacrylate) (PHEMA-MMA) channels promoted regeneration of a small number of axons from brainstem motor nuclei yet provided limited functional recovery after complete spinal cord transection at T8 in rats. However, we found that these modulus channels partially collapsed over time. Therefore, we synthesized coil-reinforced PHEMA or PHEMA-MMA channels with greater elastic moduli and introduced a new spinal fixation technique to prevent collapse. We also assessed axonal regeneration within the new channels containing a cocktail of autologous peripheral nerve grafts, fibrin matrix, and acidic fibroblast growth factor.

METHODS: After spinal cord transection, rats were divided into six groups: Groups 1 and 2 had either a PHEMA or PHEMA-MMA reinforced channel implanted between the stumps of the transected spinal cord with the cocktail; Groups 3 and 4 had either an unfilled reinforced PHEMA or PHEMA-MMA channel similarly implanted; Group 5 had an spinal cord transection without channel implanted, and Group 6 underwent the identical procedure to Group 1, but rats were sacrificed by 8 weeks for early histological assessment. Groups 1 to 5 were sacrificed at 18 weeks.

RESULTS: There was no channel collapse at any time. However, there was no improvement in axonal regeneration or functional recovery among Groups 1 to 4 because of the unexpected development of syringomyelia and caudal migration of the rostral stump. Functional recovery was better in Groups 1 to 4 compared with Group 5 (P < 0.05).

CONCLUSION: The use of channels to enhance regeneration of axons is promising; however, improvement of the design of the channels is required.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app