Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

HO-2 provides endogenous protection against oxidative stress and apoptosis caused by TNF-alpha in cerebral vascular endothelial cells.

Tumor necrosis factor-alpha (TNF-alpha) causes oxidative stress and apoptosis in a variety of cell types. Heme oxygenase (HO) degrades heme to bilirubin, an antioxidant, and carbon monoxide (CO), a cell cycle modulator, and a vasodilator. Newborn pig cerebral microvascular endothelial cells (CMVEC) highly express constitutive HO-2. We investigated the role of HO-2 in protection against TNF-alpha-induced apoptosis in cerebral vascular endothelium. In CMVEC from mice and newborn pigs, 15 ng/ml TNF-alpha alone, or with 10 microg/ml cycloheximide (CHX) caused apoptosis detected by nuclear translocation of p65 NF-kappaB, caspase-3 activation, DNA fragmentation, cell-cell contact destabilization, and cell detachment. TNF-alpha did not induce HO-1 expression in CMVEC. CMVEC from HO-2 knockout mice showed greater sensitivity to apoptosis caused by serum deprivation and TNF-alpha than did wild-type mice. TNF-alpha increased reactive oxygen species generation, including hydrogen peroxide and superoxide radicals, as detected by dihydrorhodamine-123 and dihydroethidium. The TNF-alpha response was inhibited by superoxide dismutase and catalase suggesting apoptosis is oxidative stress related. Inhibition of endogenous HO-2 in newborn pig CMVEC increased oxidative stress and exaggerated apoptosis caused by serum deprivation and TNF-alpha. In HO-1-overexpressing CMVEC (HO-1 selective induction by cobalt portophyrin), TNF-alpha did not cause apoptosis. A CO-releasing compound, CORM-A1, and bilirubin blocked TNF-alpha-induced reactive oxygen species accumulation and apoptosis consistent with the antioxidant and antiapoptotic roles of the end products of HO activity. We conclude that HO-2 is critical for protection of cerebrovascular endothelium against apoptotic changes induced by oxidative stress and cytokine-mediated inflammation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app