JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

A novel endothelin receptor antagonist CPU0213 improves diabetic cardiac insufficiency attributed to up-regulation of the expression of FKBP12.6, SERCA2a, and PLB in rats.

The depressed sarcoplasmic reticulum (SR) Ca2+-ATPase (SERCA2a) and Ca2+-release channels (ryanodine receptor RyR2) are involved in the diabetic cardiomyopathy. However, an implication of a down-regulation of FK506-binding protein or calstabin-2 (FKBP12.6) is undefined. It was hypothesized that the down-regulation of FKBP12.6 and SERCA2a of the intracellular calcium handling system is closely related to an up-regulated endothelin (ET) system. An ET receptor antagonist CPU0213 is newly discovered and expected to ameliorate cardiac insufficiency which is mediated by the depressed FKBP12.6 and SERCA2a in diabetic rat heart. Diabetes was developed in male Sprague-Dawley rats 8 weeks after an injection of streptozotocin (60 mg/kg IP), and CPU0213 was instituted 30 mg/kg, SC in the last 4 weeks. The assessment of the cardiac function, cardiac calcium handling proteins, endothelin system, and redox enzyme system were conducted. The compromised cardiac function in diabetic rats was accompanied by a significant down-regulation of expression of FKBP12.6 as well as SERCA2a and phospholamban. These were closely linked with an increased ET-1 and up-regulation of endothelin converting enzyme, PropreET1, and inducible nitric oxide synthase mRNA in diabetic cardiomyopathy. After 4-week treatment, CPU0213 was capable to attenuate completely the down-regulated FKBP12.6 and SERCA2a, and up-regulated ET system in association with a recovery of the cardiac insufficiency of diabetic cardiomyopathy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app