Interaction of valproic acid and carbapenem antibiotics with multidrug resistance-associated proteins in rat erythrocyte membranes

Kumiko Ogawa, Ryoko Yumoto, Natsuki Hamada, Junya Nagai, Mikihisa Takano
Epilepsy Research 2006, 71 (1): 76-87
We recently reported that the decrease in plasma valproic acid (VPA) level by carbapenem antibiotics (CPs) may partly be due to the increased erythrocyte distribution of VPA. In order to clarify the mechanisms underlying altered VPA distribution in erythrocytes, we examined the role of multidrug resistance-associated proteins (Mrps). The uptake of 2,4-dinitrophenyl-S-glutathione (DNP-SG), a substrate of Mrps, by inside-out vesicles (IOVs) prepared from rat erythrocytes was an ATP-dependent, active process. DNP-SG uptake was mediated by high- and low-affinity transport systems, and was inhibited by various Mrp inhibitors such as probenecid and indomethacin. Glutathione stimulated only the high-affinity transport system. VPA inhibited the low-affinity transport of DNP-SG, while panipenem, a CP, inhibited both high- and low-affinity transport. ATP-dependent, Mrp-mediated transport of methotrexate, another Mrp substrate, in IOVs was also observed, and VPA and various CPs inhibited the transport. The uptake of [(3)H]VPA was examined, and found to be ATP-dependent. ATP-dependent uptake of [(3)H]VPA was inhibited by Mrp inhibitors and panipenem, while the inhibition was not observed in the absence of ATP. These results indicate that VPA and CPs interact with Mrp-mediated transport in erythrocyte membranes, and VPA itself is transported by Mrps, which is inhibited by panipenem. Thus, the increased erythrocyte distribution of VPA by CPs observed under in vivo conditions may partly be explained by their interaction with Mrps in erythrocyte membranes.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"