JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Virus and virus-like particle-based immunogens for Alzheimer's disease induce antibody responses against amyloid-beta without concomitant T cell responses.

Vaccine 2006 September 12
A vaccine targeting the amyloid-beta (Abeta) peptide is a promising potential immunotherapy for Alzheimer's disease patients. However, experience from a recent clinical trial of a candidate Abeta vaccine has suggested that it is important to develop techniques to induce high titer antibodies against Abeta associated with vaccine efficacy while reducing the T cell responses against Abeta that were potentially responsible for serious side effects. We have previously demonstrated that immunization with self- and foreign antigens arrayed in a repetitive fashion on the surface of virus-like particles (VLPs) induces high titer antibody responses at low doses and in the absence of potentially inflammatory adjuvants. In this study, we examined the antibody and T cell responses upon immunization with human papillomavirus VLP- and Qbeta bacteriophage-based Abeta vaccines. Immunization with Abeta conjugated to VLPs or Qbeta elicited anti-Abeta antibody responses at low doses and without the use of adjuvants. The flexibility of these virus-based display systems allowed us to link and induce antibodies against short Abeta-derived peptides from the amino- and carboxyl-termini of the peptide. Immunization of mice with Abeta peptide in combination with Freund's adjuvant elicited predominantly IgG2c antibodies and strong T cell proliferative responses against Abeta. In contrast, VLP-conjugated Abeta peptides elicited more balanced isotype responses, dominated by IgG1. Both VLP and Qbeta-based Abeta vaccines induced weak or negligible T cell responses against Abeta. T cell responses were largely directed against linked viral epitopes. Taken together, virus-based vaccines that allow the presentation of Abeta in a repetitive dense array are new and potentially more effective vaccine candidates for Alzheimer's disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app