Add like
Add dislike
Add to saved papers

Robust expansion of viral antigen-specific CD4+ and CD8+ T cells for adoptive T cell therapy using gene-modified activated T cells as antigen presenting cells.

Cytomegalovirus (CMV) reactivation after stem cell transplantation can be treated with CMV-specific T cells, but current in vitro techniques using dendritic cells as antigen-presenting cells are time-consuming and expensive. To simplify the production of clinical grade CMV-specific T cells, we evaluated gene-modified activated T cells [antigen presenting T cells (T-APCs)] as a reliable and easily produced source of APCs to boost CD4+ and CD8+ T-cell responses against the immunodominant CMV antigen pp65. T-APCs expressing the full-length immunodominant CMV pp65 gene were used to stimulate the expansion of autologous T cells. After 10 to 14 days, the T cell lines were tested for antigen specificity by using the flow cytometric intracellular detection of interferon-gamma after stimulation for 6 hours with a pp65 peptide library of 15-mers, overlapping by 11 amino acids. Under optimal conditions, this technique induced a median 766-fold and a 652-fold expansion of pp65-specific CD4+ and CD8+ responder cells, respectively, in 15 T cell lines. In 13 of 15 T cell lines, over 10 antigen-specific CD4+ plus CD8+ T cells were generated starting with only 5x10 peripheral blood mononuclear cells, representing an over 3-log increase. These data indicate that T-APCs efficiently boost pp65-specific CD4+ and CD8+ T cell numbers to clinically useful levels. The approach has the advantage of using a single leukocyte collection from the donor to generate large numbers of CMV-specific T cells within a total 3-week culture period using only one stimulation of antigen.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app