COMPARATIVE STUDY
JOURNAL ARTICLE

Structure-function relationships using confocal scanning laser ophthalmoscopy, optical coherence tomography, and scanning laser polarimetry

Christopher Bowd, Linda M Zangwill, Felipe A Medeiros, Ivan M Tavares, Esther M Hoffmann, Rupert R Bourne, Pamela A Sample, Robert N Weinreb
Investigative Ophthalmology & Visual Science 2006, 47 (7): 2889-95
16799030

PURPOSE: To assess the strength of the association between retinal nerve fiber layer (RNFL) thickness and optic disc topography measured with confocal retinal tomography (HRT II; Heidelberg Engineering, Dossenheim, Germany), optical coherence tomography (StratusOCT; Carl Zeiss Meditec, Inc., Dublin, CA), and scanning laser polarimetry (GDx with variable corneal compensator, VCC; Carl Zeiss Meditec, Inc.), and visual field (VF) sensitivity and to determine whether this association is better expressed as a linear or nonlinear function.

METHODS: One hundred twenty-seven patients with glaucoma or suspected glaucoma and 127 healthy eyes from enrollees in the Diagnostic Innovations in Glaucoma Study (DIGS) were tested on HRT II, StratusOCT, GDx VCC, and standard automated perimetry (SAP, with the Swedish Interactive Thresholding Algorithm [SITA]) within 3 months of each other. Linear and logarithmic associations between RNFL thickness (HRT II, StratusOCT, and GDx VCC) and neuroretinal rim area (HRT II) and SAP sensitivity expressed in decibels were determined globally and for six RNFL/optic disc regions (inferonasal, inferotemporal, temporal, superotemporal, superonasal, and nasal) and six corresponding VF regions (superior, superonasal, nasal, inferonasal, inferior, and temporal).

RESULTS: The associations (R2) between global and regional RNFL/optic disc measurements and VF sensitivity ranged from <0.01 (temporal RNFL, nasal VF, and nasal RNFL, temporal VF; linear and logarithmic associations) to 0.26 (inferotemporal RNFL, superonasal VF; logarithmic association) for HRT II; from 0.02 (temporal RNFL, nasal VF; linear association) to 0.38 (inferotemporal RNFL, superonasal VF; logarithmic association) for OCT; and from 0.03 (temporal RNFL, nasal VF; linear association) to 0.21 (inferotemporal RNFL, superonasal VF; logarithmic association) for GDx. Structure-function relationships generally were strongest between the inferotemporal RNFL-optic disc sector and the superonasal visual field and were significantly stronger for StratusOCT RNFL thickness than for other instruments in this region. Global associations (linear and logarithmic) were significantly stronger using OCT compared with HRT. In most cases, logarithmic fits were not significantly better than linear fits when visual sensitivity was expressed in log units (i.e., decibels).

CONCLUSIONS: These results suggest that structure-function associations are strongest with StratusOCT measurements and are similar between HRT II and GDx VCC and these associations are generally no better expressed logarithmically than linearly when healthy, suspect, and glaucomatous eyes are considered.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
16799030
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"