JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Fluid-wall modelling of mass transfer in an axisymmetric stenosis: effects of shear-dependent transport properties.

Mechanical forces, such as low wall shear stress (WSS), are implicated in endothelial dysfunction and atherogenesis. The accumulation of low density lipoprotein (LDL) and hypoxia are also considered as main contributing factors in the development of atherosclerosis. The objective of this study was to investigate the influences of WSS on arterial mass transport by modelling the flow of blood and solute transport in the lumen and arterial wall. The Navier-Stokes equations and Darcy's Law were used to describe the fluid dynamics of the blood in the lumen and wall respectively. Convection-diffusion-reaction equations were used to model LDL and oxygen transport. The coupling of fluid dynamics and solute dynamics at the endothelium was achieved by the Kedem-Katchalsky equations. A shear-dependent hydraulic conductivity relation extracted from experimental data in the literature was employed for the transport of LDL and a shear-dependent permeability was used for oxygen. The integrated fluid-wall model was implemented in Comsol Multiphysics 3.2 and applied to an axisymmetric stenosis. The results showed elevated LDL concentration and reduced oxygen concentration in the subendothelial layer of the arterial wall in areas where WSS is low, suggesting that low WSS might be responsible for lipid accumulation and hypoxia in the arterial wall.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app