JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

The cardiac hERG/IKr potassium channel as pharmacological target: structure, function, regulation, and clinical applications.

Human ether-a-go-go-related gene (hERG) potassium channels conduct the rapid component of the delayed rectifier potassium current, IKr, which is crucial for repolarization of cardiac action potentials. Moderate hERG blockade may produce a beneficial class III antiarrhythmic effect. In contrast, a reduction in hERG currents due to either genetic defects or adverse drug effects can lead to hereditary or acquired long QT syndromes characterized by action potential prolongation, lengthening of the QT interval on the surface ECG, and an increased risk for "torsade de pointes" arrhythmias and sudden death. This undesirable side effect of non-antiarrhythmic compounds has prompted the withdrawal of several blockbuster drugs from the market. Studies on mechanisms of hERG channel inhibition provide significant insights into the molecular factors that determine state-, voltage-, and use-dependency of hERG current block. In addition, crucial properties of the high-affinity drug binding site in hERG and its interaction with drug molecules have been identified, providing the basis for more refined approaches in drug design, safety pharmacology and in silico modeling. Recently, mutations in hERG have been shown to cause current increase and hereditary short QT syndrome with a high risk for life-threatening arrhythmias. Finally, the discovery of adrenergic mechanisms of hERG channel regulation as well as the development of strategies to enhance hERG currents and to modify intracellular hERG protein processing may provide novel antiarrhythmic options in repolarization disorders. In conclusion, the increasing understanding of hERG channel function and molecular mechanisms of hERG current regulation could improve prevention and treatment of hERG-associated cardiac repolarization disorders.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app