COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Cold extends electromyography distinction between ion channel mutations causing myotonia.

Annals of Neurology 2006 September
OBJECTIVE: Myotonias are inherited disorders of the skeletal muscle excitability. Nondystrophic forms are caused by mutations in genes coding for the muscle chloride or sodium channel. Myotonia is either relieved or worsened by repeated exercise and can merge into flaccid weakness during exposure to cold, according to causal mutations. We designed an easy electromyography (EMG) protocol combining repeated short exercise and cold as provocative tests to discriminate groups of mutations.

METHODS: Surface-recorded compound muscle action potential was used to monitor muscle electrical activity. The protocol was applied on 31 unaffected control subjects and on a large population of 54 patients with chloride or sodium channel mutations known to cause the different forms of myotonia.

RESULTS: In patients, repeated short exercise test at room temperature disclosed three distinct abnormal patterns of compound muscle action potential changes (I-III), which matched the clinical symptoms. Combining repeated exercise with cold exposure clarified the EMG patterns in a way that enabled a clear correlation between the electrophysiological and genetic defects.

INTERPRETATION: We hypothesize that segregation of mutations into the different EMG patterns depended on the underlying pathophysiological mechanisms. Results allow us to suggest EMG guidelines for the molecular diagnosis, which can be used in clinical practice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app