Add like
Add dislike
Add to saved papers

In human endothelial cells amino acids inhibit insulin-induced Akt and ERK1/2 phosphorylation by an mTOR-dependent mechanism.

In several cellular systems, amino acids synergize with insulin in promoting protein synthesis through the activation of the protein kinases p70/S6-K and PHAS-1. Such activations are mediated by the upstream kinase: mammalian target of rapamycin (mTor). In this work we have investigated the intracellular pathways involved in insulin-induced and amino acid-induced p70/S6-K activations in human endothelial cells. In human umbilical vein endothelial cells, insulin induces the phosphorylation of p70/S6-K at 5 minutes decreasing thereafter, whereas amino acids alone or associated with insulin phosphorylate p70/S6-K at all the time points analyzed (60 minutes). Insulin and amino acids phosphorylate p70/S6-K by mTor-dependent and phosphotidylinositol 3-kinase-dependent mechanisms, whereas the mitogen-activated protein kinase pathway is involved only when p70/S6-K is activated by insulin. Insulin induces the phosphorylation of Akt and extracellular signal-regulated protein kinase (ERK) 1/2, whereas amino acids did not. Moreover, amino acids suppress the phosphorylations induced by insulin. The inhibitory effects of amino acids are reverted by the mTor inhibitor rapamycin. Insulin-induced phosphorylation of Akt (at 15 and 30 minutes) is not accompanied by the phosphorylation of the downstream kinase p70/S6-K, indicating the existence of a negative feedback at this level. Our data demonstrate that at the level of human endothelial cells, amino acids synergize with insulin in the phosphorylation of the kinase that lies downstream mTor, as p70/S6-K, whereas they inhibit the upstream kinases Akt and extracellular signal-regulated protein kinase 1/2 when activated by insulin, by an mTor-dependent mechanism.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app