JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Loss of endogenous androgen receptor protein accelerates motor neuron degeneration and accentuates androgen insensitivity in a mouse model of X-linked spinal and bulbar muscular atrophy.

X-linked spinal and bulbar muscular atrophy (SBMA; Kennedy's disease) is a polyglutamine (polyQ) disease in which the affected males suffer progressive motor neuron degeneration accompanied by signs of androgen insensitivity, such as gynecomastia and reduced fertility. SBMA is caused by CAG repeat expansions in the androgen receptor (AR) gene resulting in the production of AR protein with an extended glutamine tract. SBMA is one of nine polyQ diseases in which polyQ expansion is believed to impart a toxic gain-of-function effect upon the mutant protein, and initiate a cascade of events that culminate in neurodegeneration. However, whether loss of a disease protein's normal function concomitantly contributes to the neurodegeneration remains unanswered. To address this, we examined the role of normal AR function in SBMA by crossing a highly representative AR YAC transgenic mouse model with 100 glutamines (AR100) and a corresponding control (AR20) onto an AR null (testicular feminization; Tfm) background. Absence of endogenous AR protein in AR100Tfm mice had profound effects upon neuromuscular and endocrine-reproductive features of this SBMA mouse model, as AR100Tfm mice displayed accelerated neurodegeneration and severe androgen insensitivity in comparison to AR100 littermates. Reduction in size and number of androgen-sensitive motor neurons in the spinal cord of AR100Tfm mice underscored the importance of AR action for neuronal health and survival. Promoter-reporter assays confirmed that AR transactivation competence diminishes in a polyQ length-dependent fashion. Our studies indicate that SBMA disease pathogenesis, both in the nervous system and the periphery, involves two simultaneous pathways: gain-of-function misfolded protein toxicity and loss of normal protein function.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app