JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Gene expression patterns reveal tissue-specific signaling networks controlling programmed cell death and ABA- regulated maturation in developing barley seeds.

Plant Journal 2006 July
Gene expression patterns covering over 10,000 seed-expressed sequences were analyzed by macroarray technology in maternal tissue (mainly pericarp) and filial endosperm and embryo during barley seed development from anthesis until late maturation. Defined sets of genes showing distinct expression patterns characterized both tissue type and major developmental phases. The analysis focused on regulatory networks involved in programmed cell death (PCD) and abscisic acid (ABA)-mediated maturation. These processes were similar in the different tissues, but typically involved the expression of alternative members of a common gene family. The analysis of co-expressed gene sets and the identification of cis regulatory elements in orthologous rice gene 'promoter' regions suggest that PCD in the pericarp is mediated by distinct classes of proteases and is under the hormonal control of both jasmonic acid (JA) and ethylene via ethylene-responsive element binding protein (EREBP) transcription factors (TFs). On the other hand, PCD in endosperm apparently involves only the ethylene pathway, but employs distinct gene family members from those active in the pericarp, and a different set of proteases and TFs. JA biosynthetic genes are hardly activated. Accordingly, JA levels are high in the pericarp but low in the endosperm during middle and late developmental stages. Similarly, genes acting in the deduced ABA biosynthetic pathway and signaling network differ between endosperm and embryo. ABA in the endosperm appears to exert an influence over storage product synthesis via SNF1 kinase. In the embryo, ABA seems to influence the acquisition of desiccation tolerance via ABA response element binding factors, but the data also suggest the existence of an ABA-independent but interactive pathway acting via the dehydration-responsive element binding (DREB) 2A TF.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app