Comparative Study
Journal Article
Add like
Add dislike
Add to saved papers

In vitro tendon engineering with avian tenocytes and polyglycolic acids: a preliminary report.

Although there are many reports of in vivo tendon engineering using different animal models, only a few studies involve the short-term investigation of in vitro tendon engineering. Our previous study demonstrated that functional tendon tissue could be engineered in vivo in a hen model using tenocytes and polyglycolic acid (PGA) fibers. This current study explored the feasibility of in vitro tendon engineering using the same type of cells and scaffold material. Tenocytes were extracted from the tendons of a hen's foot with enzyme digestion and cultured in DMEM plus 10% FBS. Unwoven PGA fibers were arranged into a cord-like construct and fixed on a U-shape spring, and tenocytes were then seeded on PGA fibers to generate a cell-PGA construct. In experimental group 1, 22 cell-scaffold constructs were fixed on the spring with no tension and collected at weeks 4 (n = 7), 6 (n = 7) and 10 (n = 8); in experimental group 2, five cell-scaffold constructs were fixed on the spring with a constant strain and collected after 6 weeks of culture. In the control group, three cell-free scaffolds were fixed on the spring without tension. The collected engineered tendons were subjected to gross and histological examinations and biomechanical analysis. The results showed that tendon tissue could be generated during in vitro culture. In addition, the tissue structure and mechanical property became more mature and stronger with the increase of culture time. Furthermore, application of constant strain could enhance tissue maturation and improve mechanical property of the in vitro engineered tendon (1.302 +/- 0.404 Mpa with tension vs 0.406 +/- 0.030 Mpa without tension at 6 weeks). Nevertheless, tendon engineered with constant strain appeared much thinner in its diameter than tendon engineered without mechanical loading. Additionally, its collagen fibers were highly compacted when compared to natural tendon structure, suggesting that constant strain may not be the optimal means of mechanical load. Thus, application of dynamic mechanical load with a bioreactor to the construction of tendon tissue will be our next goal in this series of in vitro tendon engineering study.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app