Passive mechanical properties of maturing extensor digitorum longus are not affected by lack of dystrophin

Andrew V Wolff, Ashley K Niday, Kevin A Voelker, Jarrod A Call, Nicholas P Evans, Kevin P Granata, Robert W Grange
Muscle & Nerve 2006, 34 (3): 304-12
Mechanical weakness of skeletal muscle is thought to contribute to onset and early progression of Duchenne muscular dystrophy, but this has not been systematically assessed. The purpose of this study was to determine in mice: (1) whether the passive mechanical properties of maturing dystrophic (mdx) muscles were different from control; and (2) if different, the time during maturation when these properties change. Prior to and following the overt onset of the dystrophic process (14-35 days), control and dystrophic extensor digitorum longus (EDL) muscles were subjected to two passive stretch protocols in vitro (5% strain at instantaneous and 1.5 L(0)/s strain rates). Force profiles were fit to a viscoelastic muscle model to determine stiffness and damping. The mdx and control EDL muscles exhibited similar passive mechanical properties at each age, suggesting a functional threshold for dystrophic muscle below which damage may be minimized. Determining this threshold may have important clinical implications for treatments of muscular dystrophy involving physical activity.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"