Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Osteoclasts play a part in pain due to the inflammation adjacent to bone.

Bone 2006 November
Bone disorders with increased osteoclastic bone resorption are frequently associated with bone pain and inhibitors of osteoclasts reduce bone pain. Osteoclasts degrade bone minerals by secreting protons through the vacuolar H+-ATPase, creating acidic microenvironments. Because acidosis is a well-known cause of pain, we reasoned that osteoclasts cause pain through proton secretion. We explored this using an animal model in which a single subcutaneous injection of the complete Freund's adjuvant (CFA) in the hind-paw caused inflammatory hyperalgesia (hyper-responsiveness to noxious stimuli). Osteoclastic bone resorption was increased in the metatarsal bones in the CFA-injected hind-paws. CFA-induced hyperalgesia was significantly suppressed by the bisphosphonates, zoledronic acid (ZOL) and alendronate and osteoprotegerin. c-src-deficient mice in which osteoclasts are inherently dysfunctional exhibited reduced CFA-induced hyperalgesia. Repeated subcutaneous injections of parathyroid hormone-related protein into the hind-paw also induced hyperalgesia with increased osteoclastic bone resorption. The hyperalgesia was associated with increased mRNA expression of acid-sensing ion channel (ASIC) 1a, 1b and 3 in the ipsi-lateral dorsal root ganglions (DRGs) by RT-PCR and c-Fos in the ipsi-lateral spinal dorsal horn by immunohistochemistry. Of note, ZOL decreased the ASIC1a mRNA expression and c-Fos. Treatment of the DRG cell line F-11 with acid (pH5.5) increased ASIC1a, 1b and 3 mRNA expression and nuclear c-Fos expression. The ASIC blocker amiloride inhibited acid-induced c-Fos expression in F-11 cells. Moreover, F-11 cells transfected with the transient receptor potential channel vanilloid subfamily member 1 (TRPV1) showed increased acid-induced nuclear c-Fos expression compared with parental F-11 cells. Finally, bafilomycin A1, an inhibitor of the vacuolar H+-ATPase, reversed the hyperalgesia and down-regulated ASIC1a mRNA expression in the DRGs. These results led us to propose that osteoclasts play a part in CFA-induced inflammatory pain through an activation of the acid-sensing receptors including ASICs and TRPV1 by creating acidosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app