JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Effects of hind limb unloading and reloading on nitric oxide synthase expression and apoptosis of osteocytes and chondrocytes.

Bone 2006 October
In rat bone, the absence of mechanical load results in a reduction in bone formation, inhibition of longitudinal growth, and a decrease in the number of osteoblasts and osteoprogenitors in cancellous bone. Unloading has also been linked to an increase in apoptosis of osteocytes and chondrocytes through production of nitric oxide (NO) and increased expression of NO synthases (NOS). Reloading results in recovery of bone volume within 14 days, although osteoblast and osteoclast numbers remain below control values, suggesting decreased bone turnover. This study was designed to evaluate the effects of hind limb unloading and subsequent reloading on apoptosis, NOS expression, and histomorphometric parameters in trabecular and cortical bone, articular cartilage, and growth plate cartilage of the proximal tibia of the hind limbs. Compared to ambulatory controls, 2 weeks of unloading resulted in a 66% increase in the percentage of apoptotic osteocytes in the trabecular metaphysis, a 14% increase in osteoclast number and a 48% decrease in bone volume. The percentage of eNOS- or iNOS-positive osteocytes was unchanged. Upon reloading, the percentage of apoptotic osteocytes and bone volume returned to baseline whereas the percentage of iNOS-positive osteocytes increased by 50% and osteoclast number decreased by 30% compared to ambulatory controls. More striking changes were observed in articular and growth plate cartilage. Unloading resulted in a 230% increase in apoptotic chondrocytes, a 400% increase in iNOS-positive chondrocytes, and a 17% reduction in width in articular cartilage. Reloading for 2 weeks resulted in partial recovery. Chondrocytes in the proliferative and hypertrophic zones of the growth plate responded similarly to those in the articular cartilage. In summary, we observed that 14 days of unloading increased apoptosis of osteocytes and chondrocytes. This was associated with an increase in the proportion of iNOS-positive chondrocytes whereas the proportion of iNOS-positive osteocytes remained unchanged. Reloading for 14 days restored osteocyte apoptosis to control levels but the percentage of iNOS- and eNOS-positive osteocytes increased in reloaded bone compared to controls. This was associated with a decrease in osteoclast number. In cartilage, reloading for 2 weeks did not result in a return to baseline in any of the parameters measured, suggesting that the effects of unloading on articular cartilage and the growth plate last longer than those in bone and may have prolonged effects on joint biomechanics and longitudinal bone growth.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app