Letter
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Stability analysis and H infinity controller design of fuzzy large-scale systems based on piecewise Lyapunov functions.

This paper presents a novel approach to stability analysis of a fuzzy large-scale system in which the system is composed of a number of Takagi-Sugeno (T-S) fuzzy subsystems with interconnections. The stability analysis is based on Lyapunov functions that are continuous and piecewise quadratic. It is shown that the stability of the fuzzy large-scale systems can be established if a piecewise Lyapunov function can be constructed, and, moreover, the function can be obtained by solving a set of linear matrix inequalities (LMIs) that are numerically feasible. It is also demonstrated via a numerical example that the stability result based on the piecewise quadratic Lyapunov functions is less conservative than that based on the common quadratic Lyapunov functions. The H infinity controllers can also be designed by solving a set of LMIs based on these powerful piecewise quadratic Lyapunov functions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app