JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Protease-activated receptor-1 protects rat astrocytes from apoptotic cell death via JNK-mediated release of the chemokine GRO/CINC-1.

Thrombin at low doses is an endogenous mediator of protection in ischaemic and haemorrhagic models of stroke. However, the mechanism of thrombin-induced protection remains unclear. Recently accumulating evidence has shown that astrocytes play an important role in the brain after injury. We report that thrombin and thrombin receptor agonist peptide (TRag) up-regulated secretion of the chemokine growth-regulated oncogene/cytokine-induced neutrophil chemoattractant-1 (GRO/CINC-1) in primary rat astrocytes in a concentration-dependent manner. However, we found no increase of interleukin (IL)-6, IL-1beta and tumour necrosis factor-alpha secretion. Protease-activated receptor 1 (PAR-1)-induced GRO/CINC-1 release was mainly mediated by c-Jun N-terminal kinase (JNK) activation. Extracellular signal-regulated kinase 1/2 might be partially involved, but not p38 mitogen-activated protein kinase. Further studies demonstrated that PAR-1 activation, as well as application of recombinant GRO/CINC-1, protected astrocytes from C(2)-ceramide-induced cell death. Protection occurred with suppression of cytochrome c release from mitochondria. The inhibition of cytochrome c release was largely reduced by the antagonist of chemokine receptor CXCR2, SB-332235. Importantly, a specific JNK inhibitor significantly abolished the protective action of PAR-1. These results demonstrate for the first time that PAR-1 plays an important role in anti-apoptosis in the brain by regulating the release of chemokine GRO/CINC-1, which gives a feedback through its receptor CXCR2 to preserve astrocytes from toxic insults.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app