JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Wetland plant uptake of desorption-resistant organic compounds from sediments.

Wetland plant uptake of 14C-labeled phenanthrene and chlorobenzene was investigated in greenhouse studies using sediment prepared to contain only the desorption-resistant fraction of the contaminant. Measurements of contaminant distribution in the plants and root-contaminant partition coefficients were conducted as well as estimates of the transpiration stream concentration of chlorobenzene and phenanthrene. Plant uptake of desorption-resistant phenanthrene and chlorobenzene occurred primarily in the root zone with total uptake ranging from 3.8 to 5.7% of the initial concentration in the sediment. Observed uptake of the compounds was remarkably similar despite wide differences in contaminant properties. A biphasic sorption isotherm was combined with a simple translocation model to predict plant uptake from two processes: root sorption and translocation. The model predicted the observed uptake well and may serve as an important tool for estimating plant uptake in sediments containing a desorption-resistant fraction. The potential implications of the existence of a finite, desorption-resistant pool of contaminants on phytoremediation of sediments are discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app