JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Generation of antitumor responses by genetic modification of primary human T cells with a chimeric NKG2D receptor.

Cancer Research 2006 June 2
To create more effective T cells against human tumors, we have designed a strategy to allow T cells to recognize tumor cells using natural killer (NK) cell receptors but retain the effector responses of T lymphocytes. NKG2D is an activating cell surface receptor expressed on NK cells and on some T-cell subsets. Its ligands are primarily expressed on tumor cells. We have shown that by linking mouse NKG2D to the CD3zeta chain, it was possible to generate a chimeric NKG2D (chNKG2D) receptor that allowed activation of murine T cells on engagement with NKG2D ligand-positive tumor cells leading to antitumor responses in mice. In this study, a human version of the chNKG2D receptor was expressed on primary human T cells, and antitumor responses were determined. Human peripheral blood mononuclear cell-derived T cells were retrovirally transduced with a human chNKG2D receptor gene. These chNKG2D-bearing human T cells responded to NKG2D ligand-positive tumor cells by producing T-helper 1 cytokines, proinflammatory chemokines, and significant cellular cytotoxicity. This response could be blocked by anti-NKG2D antibodies, and it was dependent on NKG2D ligand expression on the target cells but not on expression of MHC molecules. In addition, the activity of chNKG2D-bearing T cells remained unimpaired after exposure to a soluble NKG2D ligand, soluble MICA, at concentrations as high as 1.5 mug/mL. These data indicate the feasibility of using chNKG2D receptors in primary human T cells and suggest that this approach may be a promising means for cancer immunotherapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app