Add like
Add dislike
Add to saved papers

Nutrient and trace element leaching following mine reclamation with biosolids.

Mine reclamation with biosolids increases revegetation success but nutrient addition well in excess of vegetation requirements has the potential to increase leaching of NO3 and other biosolids constituents. A 3-yr water quality monitoring study was conducted on a Pennsylvania mine site reclaimed with biosolids applied at the maximum permitted and standard loading rate of 134 Mg ha(-1). Zero-tension lysimeters were installed at 1-m depth 1 yr before reclamation: three in the biosolids application area, one in a control area (no biosolids). Before reclamation, all water samples had pH in the range 4.7 to 6.2, acidity < 20 mg L(-1), and very low levels of all other measured parameters. Following reclamation, percolate water in the biosolids-treated area had lower pH and greater acidity than the control area. Acidity was greatest during the first winter following biosolids application, decreased during the spring, and showed a similar pattern but with much smaller concentrations the second year. Maximum first- year leachate NO3 concentrations were approximately 300 mg L(-1) and half as large the second year. Estimated inorganic N leaching loss during the first 2 yr after biosolids application was 2327 kg N ha(-1). Aluminum, Mn, Cu, Ni, Pb, and Zn followed similar leaching patterns as did acidity, and their mobilization appeared to be the result of the increased acidity. These results indicate that large applications of low-C/N-ratio biosolids could negatively impact area water quality and that biosolids reclamation practices should be modified to reduce this possibility.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app