Add like
Add dislike
Add to saved papers

Microbial community structure and dynamics in the largest natural French lake (Lake Bourget).

We investigated the dynamics and diversity of heterotrophic bacteria, autotrophic and heterotrophic flagellates, and ciliates from March to July 2002 in the surface waters (0-50 m) of Lake Bourget. The heterotrophic bacteria consisted mainly of "small" cocci, but filaments (>2 microm), commonly considered to be grazing-resistant forms under increased nanoflagellate grazing, were also detected. These elongated cells mainly belonged to the Cytophaga-Flavobacterium (CF) cluster, and were most abundant during spring and early summer, when mixotrophic or heterotrophic flagellates were the main bacterial predators. The CF group strongly dominated fluorescent in situ hybridization-detected cells from March to June, whereas clear changes were observed in early summer when Beta-proteobacteria and Alpha-proteobacteria increased concomitantly with maximal protist grazing pressures. The analysis of protist community structure revealed that the flagellates consisted mainly of cryptomonad forms. The dynamics of Cryptomonas sp. and Dinobryon sp. suggested the potential importance of mixotrophs as consumers of bacteria. This point was verified by an experimental approach based on fluorescent microbeads to assess the potential grazing impact of all protist taxa in the epilimnion. From the results, three distinct periods in the functioning of the epilimnetic microbial loop were identified. In early spring, mixotrophic and heterotrophic flagellates constituted the main bacterivores, and were regulated by the availability of their resources mainly during April (phase 1). Once the "clear water phase" was established, the predation pressure of metazooplankton represented a strong top-down force on all microbial compartments. During this period only mixotrophic flagellates occasionally exerted a significant bacterivory pressure (phase 2). Finally, the early summer was characterized by the highest protozoan grazing impact and by a rapid shift in the carbon pathway transfer, with a fast change-over of the main predators contribution, i.e., mixotrophic, heterotrophic flagellates and ciliates in bacterial mortality. The high abundance of ciliates during this period was consistent with the high densities of resources (heterotrophic nanoflagellates, algae, bacteria) in deep layers containing the most chlorophyll. Bacteria, as ciliates, responded clearly to increasing phytoplankton abundance, and although bacterial grazing impact could vary largely, bacterial abundance seemed to be primarily bottom-up regulated (phase 3).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app