Endothelial dysfunction in rat adjuvant-induced arthritis: vascular superoxide production by NAD(P)H oxidase and uncoupled endothelial nitric oxide synthase

Yoshisuke Haruna, Yoshitaka Morita, Norio Komai, Toyotaka Yada, Takeo Sakuta, Naruya Tomita, David A Fox, Naoki Kashihara
Arthritis and Rheumatism 2006, 54 (6): 1847-55

OBJECTIVE: To investigate endothelial function and levels of vascular oxidative stress in rat adjuvant-induced arthritis (AIA), in view of mounting evidence for an association between rheumatoid arthritis (RA) and accelerated vascular disease.

METHODS: Thoracic aortic rings were prepared from AIA and control rats. After preconstriction by norepinephrine, the vasodilatory response to acetylcholine was determined. The amounts of 4-hydroxy-2-nonenal (HNE) and nitrotyrosine in AIA rat aortas were measured by Western blotting. Homogenates of the aortas were incubated with various substrates for superoxide-producing enzymes, and superoxide production was assessed by fluorogenic oxidation of dihydroethidium to ethidium. Expression of endothelial nitric oxide synthase (eNOS) in aortas was examined by real-time reverse transcriptase-polymerase chain reaction and Western blotting. Serum levels of tetrahydrobiopterin (BH4), a critical eNOS cofactor, were determined by high-performance liquid chromatography.

RESULTS: Endothelium-dependent relaxation of the aortic ring was significantly depressed in AIA rats compared with control rats. The amounts of HNE and nitrotyrosine were increased in AIA rat aortas, indicating overproduction of reactive oxygen species. Incubation of AIA rat aorta homogenates with NADH or L-arginine, a substrate of eNOS, resulted in a significant increase in superoxide production. Endothelial NOS was highly expressed in AIA rat aortas. Serum levels of BH4 were significantly lower in AIA. Treatment of AIA with BH4 reversed the endothelial dysfunction, suggesting that its deficiency may contribute to the uncoupling of eNOS.

CONCLUSION: Vascular dysfunction in RA can be partially modeled in animals. NAD(P)H oxidase and uncoupled eNOS are responsible for the increase in vascular oxidative stress, which is likely to be involved in the endothelial dysfunction in AIA.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"