Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

From pulsus to pulseless: the saga of cardiac alternans.

Computer simulations and nonlinear dynamics have provided invaluable tools for illuminating the underlying mechanisms of cardiac arrhythmias. Here, we review how this approach has led to major insights into the mechanisms of spatially discordant alternans, a key arrhythmogenic factor predisposing the heart to re-entry and lethal arrhythmias. During spatially discordant alternans, the action potential duration (APD) alternates out of phase in different regions of the heart, markedly enhancing dispersion of refractoriness so that ectopic beats have a high probability of inducing reentry. We show how, at the cellular level, instabilities in membrane voltage (ie, steep APD restitution slope) and intracellular Ca (Cai) cycling dynamics cause APD and the Cai transient to alternate and how the characteristics of alternans are affected by different "modes" of the bidirectional coupling between voltage and Cai. We illustrate how, at the tissue level, additional factors, such as conduction velocity restitution and ectopic beats, promote spatially discordant alternans. These insights have illuminated the mechanistic basis underlying the clinical association of cardiac alternans (eg, T wave alternans) with arrhythmia risk, which may lead to novel therapeutic approaches to avert sudden cardiac death.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app