Add like
Add dislike
Add to saved papers

MGOUN3: evidence for chromatin-mediated regulation of FLC expression.

The MGOUN3(MGO3)/BRUSHY1(BRU1)/TONSOKU(TSK) gene of Arabidopsis thaliana encodes a nuclear leucine-glycine-asparagine (LGN) domain protein that may be implicated in chromatin dynamics and genome maintenance. Mutants with defects in MGO3 display a fasciated stem and disorganized meristem structures. The transition to flowering was examined in mgo3 mutants and it was found that, under short days, the mutants flowered significantly earlier than the wild-type plants. Study of flowering-time associated gene expression showed that the floral transition inhibitor gene FLC was under-expressed in the mutant background. Ectopic expression of the flower-specific genes AGAMOUS (AG), PISTILLATA (PI), and SEPALLATA3 (SEP3) in mgo3 vegetative organs was also detected. Western blot and chromatin immunoprecipitation experiments suggested that histone H3 acetylation may be altered in the mgo3 background. Together, these data suggest that MGO3 is required for the correct transition to flowering and that this may be mediated by histone acetylation and associated changes in FLC expression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app