Add like
Add dislike
Add to saved papers

Substituent effect on the luminescent properties of a series of deep blue emitting mixed ligand Ir(III) complexes.

The syntheses of the bright deep blue emitting mixed ligand Ir(III) complexes comprising two cyclometalating, one phosphine and one cyano, ligands are reported. In this study, a firm connection between the nature of the excited states and the physicochemical behavior of the complexes with different ligand systems is elucidated by correlating the observed crystal structures, spectroscopic properties, and electrochemical properties with the theoretical results obtained by the density functional theory (DFT) methods. The cyclometalating ligands used here are the anions of 2-(4',6'-difluorophenyl)-pyridine (F2ppy), 2-(4',6'-difluorophenyl)-4-methyl pyridine (F2ppyM), and 4-amino-2-(4',6'-difluorophenyl)-pyridine (DMAF2ppy). The phosphine ligands are PhP(O-(CH2CH2O)3-CH3)2 and Ph2P(O-(CH2CH2O)n-CH3), where Ph = phenyl and n = 1 (P1), 3 (P3), or 8 (P350). The thermal stabilities of the complexes were enhanced upon increasing the "n" value. The crystal structures of the complexes, [(DMAF2ppy)2Ir(P1)CN], (P1)DMA, and [(F2ppyM)2Ir(P3)CN], (P3)F2M, show the cyano and phosphine groups being in a cis configuration to each other and in a trans configuration to the coordinating Cring atoms. The long Ir-Cring bond lengths are ascribed to the trans effect of the strong phosphine and cyano ligands. DFT calculations indicate that the highest occupied molecular orbital (HOMO) is mainly contributed from the d-orbitals of the iridium atom and the pi-orbitals of cyclometalating and cyano ligands, whereas the lowest unoccupied molecular orbital (LUMO) spreads over only one of the cyclometalating ligands, with no contribution from phosphine ligands to both frontier orbitals. Dimethylamino substitution increases the energy of the emitting state that has more metal-to-ligand-charge-transfer (MLCT) character evidenced by the smaller vibronic progressions, smaller difference in the 1MLCT and 3MLCT absorption wavelengths, and higher extinction coefficients (epsilon) than the F2ppy and F2ppyM complexes. However, the increase in the basicity of the dimethylamino group in the DMAF2ppy complexes in the excited states leads to distortions and consequent nonradiative depopulation of the excited states, decreasing their lower photoluminescence (PL) efficiency. The effect of the substituents in the phosphine ligand is more pronounced in the electroluminescence (EL) than in the PL properties. Multilayer organic light emitting devices (OLEDs) are fabricated by doping the Ir(III) complexes in a blend of mCP (m-bis(N-carbazolyl benzene)) and polystyrene, and their device characteristics are studied. The (P3)F2M complex shows a maximum external quantum efficiency (etaex) of 2%, a maximum luminance efficiency (etaL) of 4.13 cd/A at 0.04 mA/cm2, and a maximum brightness of 7200 cd/m2 with a shift of the Commission Internationale de L'Eclairage (CIE) coordinates from (0.14, 0.15) in film PL to (0.19, 0.34) in EL.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app