Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Age-related fatigability of the ankle dorsiflexor muscles during concentric and eccentric contractions.

This study compares the fatigability of the ankle dorsiflexors during five sets of 30 maximal concentric and eccentric contractions in young and elderly adults. The torque produced by the ankle dorsiflexors and the average surface electromyogram (aEMG) of the tibialis anterior were continuously recorded. The contribution of central and peripheral mechanisms to muscle fatigue was tested before, after each set of contractions, and during a 30 min recovery period by the superimposed electrical stimulation method. The compound muscle action potential (M-wave), the mechanical response to single (twitch) and paired (doublet) stimulation, and the postactivation potentiation were also recorded. Compared with young subjects, elderly adults exhibited a greater loss of torque for concentric (50.2 vs. 40.9%; P<0.05) and eccentric (42.1 vs. 27.1%; P < 0.01) contractions. Although young subjects showed a lesser decrease in torque during the eccentric compared with concentric contractions, elderly adults experienced similar fatigability for the two types of contractions despite a comparable depression in the EMG activity of both groups and contraction types (10-20%). As tested by the interpolated-twitch method and aEMG/M-wave ratio, voluntary activation was not altered during either type of contraction or for either age group. During the two fatigue tasks, only elderly adults experienced a decrease in M-wave area (26.4-35.4%; P < 0.05). All together, our results suggest that the fatigue exhibited by both young and elderly adults during maximal concentric and eccentric contractions mainly involved peripheral alterations and that elderly adults may also have experienced a decline in neuromuscular propagation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app