Add like
Add dislike
Add to saved papers

Susceptibility of nanoparticle-encapsulated paclitaxel to P-glycoprotein-mediated drug efflux.

Overexpression of P-glycoprotein (P-gp) is a key factor contributing to the development of multidrug resistance (MDR) in cancer cells. The objective of the study is to investigate whether a P-gp substrate, paclitaxel, delivered to MDR tumor cells in poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles is susceptible to P-gp - mediated drug efflux. Paclitaxel-loaded nanoparticles were formulated by emulsion-solvent evaporation technique. Nanoparticles had a mean hydrodynamic diameter of about 195nm, and demonstrated sustained release of paclitaxel. In vitro cell culture studies indicated that paclitaxel nanoparticles result in sustained, dose-dependent and significant cytotoxicity in drug-sensitive MCF-7 tumor cells but not in drug-resistant NCI-ADR/RES cells. Resistance to nanoparticle-encapsulated paclitaxel was reversed by verapamil, a P-gp inhibitor. Further, sustained inhibition of P-gp was necessary for sustaining the cytotoxicity of nanoparticle-encapsulated paclitaxel in drug-resistant cells. Inhibition of P-gp by verapamil did not significantly affect the uptake or retention of nanoparticles in drug-resistant cells. In conclusion, our studies suggest that P-gp substrates, such as paclitaxel, delivered to MDR cells by PLGA nanoparticles, are susceptible to efflux by P-gp. Inhibition of P-gp restores sensitivity to paclitaxel; however, sustained inhibition of P-gp is required for sustained therapeutic efficacy of nanoparticle-encapsulated drug.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app