Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Culturing in vitro produced blastocysts in sequential media promotes ES cell derivation.

Embryonic stem (ES) cell lines are routinely derived from in vivo produced blastocysts. We investigated the efficiency of ES cells derivation from in vitro produced blastocysts either in monoculture or sequential culture. Zygotes from hybrid F1 B6D2 mice were cultured in vitro to the blastocyst stage in Potassium (K(+)) simplex optimised medium (KSOM) throughout or in KSOM and switched to COOK blastocyst medium on day 3 (KSOM-CBM). Blastocysts were explanted on a feeder layer of mitomycin C-inactivated murine embryonic fibroblasts (MEF) in TX-WES medium for ES cell derivation. Sequential KSOM-CBM resulted in improved blastocyst formation compared to KSOM monoculture. ES cells were obtained from 32.1% of explanted blastocsyts cultured in KSOM-CBM versus 18.4% in KSOM alone. ES cell lines were characterized by morphology, expression of SSEA-1, Oct-4 and alkaline phosphatase activity, and normal karyotype. These results indicate that in vitro culture systems to produce blastocysts can influence the efficiency of ES cell line derivation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app