COMPARATIVE STUDY
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Botulinum-A toxin injections into the detrusor muscle decrease nerve growth factor bladder tissue levels in patients with neurogenic detrusor overactivity.

PURPOSE: We investigated the effects of BTX-A on visceral afferent nerve transmission by measuring bladder tissue NGF levels in patients with neurogenic detrusor overactivity before and after intravesical treatment with BTX-A. We also compared the bladder tissue NGF content with clinical and urodynamic data.

MATERIALS AND METHODS: A total of 23 patients underwent clinical evaluation and urodynamics with detection of the UDC threshold, maximum pressure and maximum cystometric capacity before, and at the 1 and 3-month followups. Endoscopic bladder wall biopsies were also obtained at the same time points. NGF levels were measured in tissue homogenate by enzyme-linked immunosorbent assay (Promega, Madison, Wisconsin).

RESULTS: At 1 and 3 months mean catheterization and incontinent episodes were significantly decreased (p <0.05 and <0.001, respectively). On urodynamics we detected a significant increase in the UDC threshold and maximum cystometric capacity, and a significant decrease in UDC maximum pressure at the 1 and 3-month follow-ups compared to baseline (each p <0.001). At the same time points we detected a significant decrease in NGF bladder tissue content (each p <0.02).

CONCLUSIONS: BTX-A intravesical treatment induces a state of NGF deprivation in bladder tissue that persists at least up to 3 months. As caused by BTX-A, the decrease in acetylcholine release at the presynaptic level may induce a decrease in detrusor contractility and in NGF production by the detrusor muscle. Alternatively BTX-A can decrease the bladder level of neurotransmitters that normally modulate NGF production and release.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app