Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Climate change may account for the decline in British ring ouzels Turdus torquatus.

1. Climate change is already affecting biodiversity, but the number of species for which reliable models relate weather and climate to demographic parameters is low. 2. We modelled the effect of temperature and rainfall on the breeding success and territory occupancy of ring ouzels Turdus torquatus (L.) in northern Britain, using data from a range of study areas, including one where there was a long-term decline in ring ouzel abundance. 3. Timing of breeding was significantly related to meteorological variables affecting birds in the early spring, though there was no evidence that laying dates had advanced. Breeding success was not significantly related to weather variables; instead, over 90% of annual variation in this parameter could be explained by density dependence. 4. Annual change in territory occupancy was linked to rainfall and temperature the preceding summer, after the main breeding season and to rainfall in the wintering grounds 24 months previously, coincident with the period of juniper Juniperus sp. (L.) flowering. High temperature in late summer, intermediate levels of late summer rainfall, and high spring rainfall in Morocco 24 months previously all had negative impacts on territory occupancy the following year. 5. All three weather variables have changed over recent decades, with a significant increase in summer temperature, a significant decrease in summer rainfall, and a nonsignificant decline in Moroccan spring rainfall. A model based on these trends alone predicted an annual decline in occupancy of 3.6% (compared with an observed decline of 1.2%), and suggested that increased summer temperatures may underlie declines in the British ring ouzel population. 6. Changes in summer temperature after the main breeding period could affect the survival rates of adult and/or juvenile birds. An improved understanding of the post-breeding ecology of ring ouzels is required to elucidate the mechanisms and causes of this relationship. Such knowledge might allow management aimed at buffering the impacts of climate change on ring ouzels.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app