JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Adenovirus E4orf4 hijacks rho GTPase-dependent actin dynamics to kill cells: a role for endosome-associated actin assembly.

The adenovirus early region 4 ORF4 protein (E4orf4) triggers a novel death program that bypasses classical apoptotic pathways in human cancer cells. Deregulation of the cell cytoskeleton is a hallmark of E4orf4 killing that relies on Src family kinases and E4orf4 phosphorylation. However, the cytoskeletal targets of E4orf4 and their role in the death process are unknown. Here, we show that E4orf4 translocates to cytoplasmic sites and triggers the assembly of a peculiar juxtanuclear actin-myosin network that drives polarized blebbing and nuclear shrinkage. We found that E4orf4 activates the myosin II motor and triggers de novo actin polymerization in the perinuclear region, promoting endosomes recruitment to the sites of actin assembly. E4orf4-induced actin dynamics requires interaction with Src family kinases and involves a spatial regulation of the Rho GTPases pathways Cdc42/N-Wasp, RhoA/Rho kinase, and Rac1, which make distinct contributions. Remarkably, activation of the Rho GTPases is required for induction of apoptotic-like cell death. Furthermore, inhibition of actin dynamics per se dramatically impairs E4orf4 killing. This work provides strong support for a causal role for endosome-associated actin dynamics in E4orf4 killing and in the regulation of cancer cell fate.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app