Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Myocardial dysfunction and neurohumoral activation without remodeling in left ventricle of monocrotaline-induced pulmonary hypertensive rats.

In monocrotaline (MCT)-induced pulmonary hypertension (PH), only the right ventricle (RV) endures overload, but both ventricles are exposed to enhanced neuroendocrine stimulation. To assess whether in long-standing PH the left ventricular (LV) myocardium molecular/contractile phenotype can be disturbed, we evaluated myocardial function, histology, and gene expression of autocrine/paracrine systems in rats with severe PH 6 wk after subcutaneous injection of 60 mg/kg MCT. The overloaded RV underwent myocardial hypertrophy (P < 0.001) and fibrosis (P = 0.014) as well as increased expression of angiotensin-converting enzyme (ACE) (8-fold; P < 0.001), endothelin-1 (ET-1) (6-fold; P < 0.001), and type B natriuretic peptide (BNP) (15-fold; P < 0.001). Despite the similar upregulation of ET-1 (8-fold; P < 0.001) and overexpression of ACE (4-fold; P < 0.001) without BNP elevation, the nonoverloaded LV myocardium was neither hypertrophic nor fibrotic. LV indexes of contractility (P < 0.001) and relaxation (P = 0.03) were abnormal, however, and LV muscle strips from MCT-treated compared with sham rats presented negative (P = 0.003) force-frequency relationships (FFR). Despite higher ET-1 production, BQ-123 (ET(A) antagonist) did not alter LV MCT-treated muscle strip contractility distinctly (P = 0.005) from the negative inotropic effect exerted on shams. Chronic daily therapy with 250 mg/kg bosentan (dual endothelin receptor antagonist) after MCT injection not only attenuated RV hypertrophy and local neuroendocrine activation but also completely reverted FFR of LV muscle strips to positive values. In conclusion, the LV myocardium is altered in advanced MCT-induced PH, undergoing neuroendocrine activation and contractile dysfunction in the absence of hypertrophy or fibrosis. Neuroendocrine mediators, particularly ET-1, may participate in this functional deterioration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app