COMPARATIVE STUDY
JOURNAL ARTICLE

Signaling mechanisms of down-regulation of voltage-activated Ca2+ channels by transient receptor potential vanilloid type 1 stimulation with olvanil in primary sensory neurons

Z-Z Wu, S-R Chen, H-L Pan
Neuroscience 2006 August 11, 141 (1): 407-19
16678970
Olvanil ((N-vanillyl)-9-oleamide), a non-pungent transient receptor potential vanilloid type 1 agonist, desensitizes nociceptors and alleviates pain. But its molecular targets and signaling mechanisms are little known. Calcium influx through voltage-activated Ca(2+) channels plays an important role in neurotransmitter release and synaptic transmission. Here we determined the effect of olvanil on voltage-activated Ca(2+) channel currents and the signaling pathways in primary sensory neurons. Whole-cell voltage-clamp recordings were performed in acutely isolated rat dorsal root ganglion neurons. Olvanil (1 microM) elicited a delayed but sustained inward current, and caused a profound inhibition (approximately 60%) of N-, P/Q-, L-, and R-type voltage-activated Ca(2+) channel current. Pretreatment with a specific transient receptor potential vanilloid type 1 antagonist or intracellular application of 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid abolished the inhibitory effect of olvanil on voltage-activated Ca(2+) channel current. Calmodulin antagonists (ophiobolin-A and calmodulin inhibitory peptide) largely blocked the effect of olvanil and capsaicin on voltage-activated Ca(2+) channel current. Furthermore, calcineurin (protein phosphatase 2B) inhibitors (deltamethrin and FK-506) eliminated the effect of olvanil on voltage-activated Ca(2+) channel current. Notably, 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid, calmodulin antagonists, and calcineurin inhibitors each alone significantly increased the amplitude of voltage-activated Ca(2+) channel current. In addition, double immunofluorescence labeling revealed that olvanil induced a rapid internalization of Ca(V)2.2 immunoreactivity from the membrane surface of dorsal root ganglion neurons. Collectively, this study suggests that stimulation of non-pungent transient receptor potential vanilloid type 1 inhibits voltage-activated Ca(2+) channels through a biochemical pathway involving intracellular Ca(2+)-calmodulin and calcineurin in nociceptive neurons. This new information is important for our understanding of the signaling mechanisms of desensitization of nociceptors by transient receptor potential vanilloid type 1 analogues and the feedback regulation of intracellular Ca(2+) and voltage-activated Ca(2+) channels in nociceptive sensory neurons.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
16678970
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"