JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Structural insights into histone demethylation by JMJD2 family members.

Cell 2006 May 20
Posttranslational modifications of histones regulate chromatin structure and gene expression. Histone demethylases, members of a newly emerging transcription-factor family, remove methyl groups from the lysine residues of the histone tails and thereby regulate the transcriptional activity of target genes. JmjC-domain-containing proteins have been predicted to be demethylases. For example, the JmjC-containing protein JMJD2A has been characterized as a H3-K9me3- and H3-K36me3-specific demethylase. Here, structures of the catalytic-core domain of JMJD2A with and without alpha-ketoglutarate in the presence of Fe2+ have been determined by X-ray crystallography. The structure of the core domain, consisting of the JmjN domain, the JmjC domain, the C-terminal domain, and a zinc-finger motif, revealed the unique elements that form a potential substrate binding pocket. Sited-directed mutagenesis in conjunction with demethylase activity assays allowed us to propose a molecular model for substrate selection by the JMJD2 histone demethylase family.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app