Journal Article
Randomized Controlled Trial
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Sensory-mechanical relationships during high-intensity, constant-work-rate exercise in COPD.

During constant-work-rate exercise in chronic obstructive pulmonary disease, dyspnea increases steeply once inspiratory reserve volume (IRV) falls to a critical level that prevents further expansion of tidal volume (Vt). We studied the effects of this mechanical restriction on the quality and intensity of exertional dyspnea and examined the impact of an anticholinergic bronchodilator. In a randomized, double-blind, crossover study, 18 patients with chronic obstructive pulmonary disease (forced expiratory volume in 1 s = 40 +/- 3%predicted; mean +/- SE) inhaled tiotropium 18 mug or placebo once daily for 7-10 days each. Pulmonary function tests and symptom-limited cycle exercise at 75% of each patient's maximal work capacity were performed 2 h after dosing. Dyspnea intensity (Borg scale), operating lung volumes, breathing pattern, and esophageal pressure (n = 11) were measured during exercise. Dynamic hyperinflation reached its maximal value early in exercise and was associated with only mild increases in dyspnea intensity and the effort-displacement ratio, which is defined as the ratio between tidal swings of esophageal pressure (expressed relative to maximum inspiratory pressure) and Vt (expressed relative to predicted vital capacity). After a minimal IRV of 0.5 +/- 0.1 liter was reached, both dyspnea and the effort-displacement ratio rose steeply until an intolerable level was reached. Tiotropium did not alter dyspnea-IRV relationships, but the increase in resting and exercise inspiratory capacity was associated with an improved effort-displacement ratio throughout exercise. Once a critically low IRV was reached during exercise, dyspnea rose with the disparity between respiratory effort and the Vt response. Changes in dyspnea intensity after tiotropium were positively correlated with changes in this index of neuromechanical coupling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app