Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Sprouty2 is involved in male sex organogenesis by controlling fibroblast growth factor 9-induced mesonephric cell migration to the developing testis.

Endocrinology 2006 August
Fibroblast growth factor 9 (FGF9) signal has a role in organogenesis of the mammalian testis by controlling migration of mesonephric cells to the XY gonad, but neither it nor the FGF receptors is expressed sex-specifically. Of the Sprouty genes encoding antagonists of receptor tyrosine kinases including FGFr, mSprouty2 expression was confined to the developing testis and mesonephros. Gain of SPROUTY2 function in the male genital ridge and mesonephros malformed the vas deferens and epididymis, and diminished the number of seminiferous tubules and interstitium associating with reduced mesonephric cell migration and Fgf9 expression in embryonic testis, whereas exogenous FGF9 signaling recovered mesonephric cell migration inhibited by SPROUTY2. These phenotypes associated also with the decreased expression of Sox9, Desert hedgehog, Hsd3beta, Platelet/endothelial cell adhesion molecule, and alpha-smooth muscle actin, which are markers of the Sertoli, Leydig, endothelial, and peritubular myoid cells of the developing testis. Based on these data, we propose that the Sprouty proteins are involved normally in mediating the sexually dimorphic signaling of FGF9 and controlling cell migration from the mesonephros during testis development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app