JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Qualitative and quantitative analysis of phosphorylated ATM foci induced by low-dose ionizing radiation.

We examined the formation of phosphorylated ataxia telangiectasia mutated (ATM) foci in exponentially growing normal human diploid cells exposed to low doses of X rays. Phosphorylated ATM foci were detected immediately after irradiation, and the number of foci decreased as the time after irradiation increased. The kinetics of phosphorylated ATM foci was comparable to that of phosphorylated histone H2AX. We found that there were fewer spontaneous phosphorylated ATM foci than that phosphorylated histone H2AX foci. Notably, significant numbers of phosphorylated histone H2AX foci, but not phosphorylated ATM foci, were detected in the S-phase cells. The induction of foci showed a linear dose-response relationship with doses ranging for 10 mGy to 1 Gy, and the average number of phosphorylated ATM foci per gray was approximately 50. The average size of the foci was comparable for the cells irradiated with 20 mGy and 1 Gy, and there was no significant difference in the kinetics of disappearance of foci, indicating that DNA double-strand breaks are similarly recognized by DNA damage checkpoints and are repaired irrespective of the dose.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app