In Vitro
Journal Article
Add like
Add dislike
Add to saved papers

Investigation on drug dissolution and particle characteristics of pellets related to manufacturing process variables of high-shear granulation.

There is a growing interest for multiparticulate solid dosage forms such as pellets, because of their several advantages over tablets during drug therapy. It is essential to investigate the drug dissolution process which can be influenced by the composition and manufacturing process technology, too. This study was performed applying experimental design in order to evaluate the effects of independent process variables during high-shear pelletisation, taking the impeller speed (x1) and granulation binder flow rate (x2) as factors into consideration. Theophylline containing pellet formulation was prepared using a matrix consisted of ethylcellulose, microcrystalline cellulose and lactose. Dissolution profiles were modeled by the Weibull function to evaluate the power of process variables. Both process variables were powerful to influence the particle agglomeration. A linear regression was found between the particle size and the diffuse reflectance values after the Kubelka-Munk transformation. Differences in the diffuse reflectance spectra of pellet samples related to particle size offer a fast instrumental method for the in-process control.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app