Integrin-linked kinase functions as a downstream mediator of endothelin-1 to promote invasive behavior in ovarian carcinoma

Laura Rosanò, Francesca Spinella, Valeriana Di Castro, Shoukat Dedhar, Maria Rita Nicotra, Pier Giorgio Natali, Anna Bagnato
Molecular Cancer Therapeutics 2006, 5 (4): 833-42
The endothelin-1 (ET-1) axis represents a novel target in several malignancies, including ovarian carcinoma. Upon being activated, the endothelin A receptor (ET(A)R) mediates multiple tumor-promoting activities, including mitogenesis, escape from apoptosis, angiogenesis, metastasis-related protease activation, epithelial-mesenchymal transition, and invasion. Integrin-linked kinase (ILK) is a multidomain focal adhesion protein that conveys intracellular signaling elicited by beta1-integrin and growth factor receptors. In this study, we investigate whether the signaling triggered by ET(A)R leading to an aggressive phenotype is mediated by an ILK-dependent mechanism. In HEY and OVCA 433 ovarian carcinoma cell lines, activation of ET(A)R by ET-1 enhances the expression of alpha2beta1 and alpha3beta1 integrins. ILK activity increases as ovarian cancer cells adhere to type I collagen through beta1 integrin signaling, and do so to a greater extent on ET-1 stimulation. ET-1 increases ILK mRNA and protein expression and activity in a time- and concentration-dependent manner. An ILK small-molecule inhibitor (KP-392) or transfection with a dominant-negative ILK mutant effectively blocks the phosphorylation of downstream signals, Akt and glycogen synthase kinase-3beta. The blockade of ET-1/ET(A)R-induced ILK activity results in an inhibition of matrix metalloproteinase activation as well as of cell motility and invasiveness in a phosphoinositide 3 kinase-dependent manner. In ovarian carcinoma xenografts, ABT-627, a specific ET(A)R antagonist, suppresses ILK expression, Akt and glycogen synthase kinase-3beta phosphorylation, and tumor growth. These data show that ILK functions as a downstream mediator of the ET-1/ET(A)R axis to potentiate aggressive cellular behavior. Thus, the ILK-related signaling cascade can be efficiently targeted by pharmacologic blockade of ET(A)R.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"