Add like
Add dislike
Add to saved papers

The osteogenic potential of adipose-derived stem cells for the repair of rabbit calvarial defects.

INTRODUCTION: Bone replacement is often necessary during reconstruction of craniofacial anomalies or trauma. Adipose-derived stem cells (ASCs) possess osteogenic potential and are a promising cell source for bone tissue engineering. The present study was designed to assess the osteogenic potential and utility of using ASCs to regenerate bone in a rabbit calvarial defect model.

METHODS: Rabbit ASCs were seeded on gelatin foam (GF) scaffolds and induced in osteogenic medium containing bone morphogenetic protein (BMP)-2. Thirty-four 8-mm calvarial defects were randomly treated with autograft, no treatment, GF scaffold, GF + ASCs, or GF + osteoinduced ASCs. After 6 weeks, calvaria were harvested and underwent histologic and radiologic analyses to compare healing between the treatment groups.

RESULTS: Defects treated with autograft underwent complete healing. Radiologically, there were no significant (P > 0.05) differences in healing among empty defects, and those treated with GF alone or GF plus osteoinduced ASCs. Osteoinduced ASCs exhibited significantly (P < 0.05) greater healing than noninduced ASCs.

CONCLUSION: Preimplantation osteoinduction of ASCs enhances their osteogenic capacity. Lack of a significant osteogenic effect of ASCs on calvarial healing at 6 weeks may be secondary to use of noncritical-sized defects. Larger defects would likely demonstrate the osteogenic potential of ASCs more definitively.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app